OPTIMIZING CITRUS IRRIGATION MANAGEMENT WITH SOIL AND PLANT-BASED SENSORS

Davie Kadyampakeni

Associate Professor Soil, Water and Ecosystem Sciences Citrus Research and Education Center Email: dkadyampakeni@ufl.edu

Outline

General Soils of Florida

Weather-based tools and apps

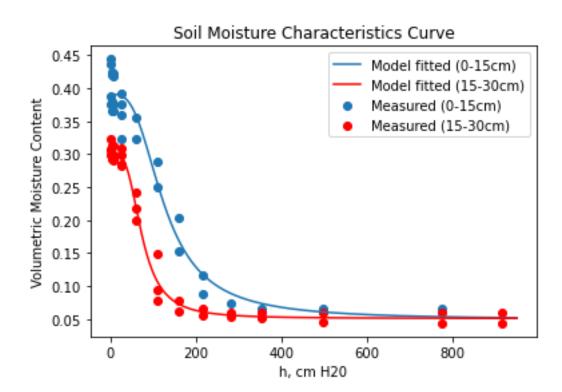
Examples of applications

Sensors:

Soil-based sensors Plant-based sensors Take home messages

Soil Physical & chemical Characteristics

Typical root zone¹ soil physical and chemical properties for common soil series found in citrus groves in Florida. Adapted from Obreza and Collins (2008).


Soil	Soil texture			Organic				Cation
orders(²)	sand	silt	clay	matter	Water-hold	ing capacity	рН	exchange capacity
		g kg ⁻¹		g dm ⁻³	cm m ⁻¹	cm in the root zone		mmol _c dm ⁻³
Entisols	970-985	50-125	75-125	5-10	2.5-6.6	1.5-5.3	3.6-7.3	20-40
Alfisols	850-965	20-60	15-90	5-3	2.5-10.7	1.3-4.6	4.5-8.4	20-180
Spodosols	960-985	10-35	05-10	10-30	2.5-6.6	1.3-3.8	3.6-7.3	20-60

(¹) top 90 cm of soil for central Ridge Entisols and top 45 cm of soil for flatwoods Alfisols, Spodosols, and Entisols.

(²) according to the USDA Soil Taxonomy (Soil Survey Staff, 2014).

Tensiometric moisture content

Estimates water content on pressure basis

Computer Programs

Web based

- Schedule based on nearest FAWN station (<u>http://fawn.ifas.ufl.edu</u>.)
- Enter: Field capacity, spacing, irrigation specifications
- PC Irrigation program
 - Same information required
 - Stores irrigation data
 - Print reports
- Smart Phone Apps
 - Use real-time data
 - Irrigation schedule in units of time
 - Send notifications and forecasted probability of rainfall

Attention: Date/Time in this table is East Standard Time.

LAKE ALFRED W	eather Da	ally Summ	nary:		\frown									
Date (EST)	Air Ter	np (°F)	Rainfall	TotalRad	ET		Ηοι	urs Below (Certain Terr	perature	(hours)		
	Min	Max	(inches)	(cal/inch^2	(inches)	40°F	45°F	50°F	55°F	60°F	65°F	70°F	75°F	
Apr 15, 2006	57.5	86.9	0.00	3586.6		0.0	0.0	0.0	0.0	5.1	1.9	-7.0	-4.0	
Apr 16, 2006	59.1	84.0	0.00	3514.0	0.159	0.0	0.0	0.0	0.0	0.8	10.5	-6.8	-2.8	
Apr 17, 2006	65.6	86.4	0.00	3547.3	0.173	0.0	0.0	0.0	0.0	0.0	0.0	-9.6	-4.9	
Apr 18, 2006	67.8	86.3	0.00	3087.9	0.159	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-6.3	
Apr 19, 2006	67.3	88.6	0.01	2972.9	0.156	0.0	0.0	0.0	0.0	0.0	0.0	9.2	-6.3	
Apr 20, 2006	68.5	92.0	0.00	3282.4	0.174	0.0	0.0	0.0	0.0	0.0	0.0	6.9	-7.3	
Apr 21, 2006	68.9	92.5	0.24	2640.0	0.151	0.0	0.0	0.0	0.0	0.0	0.0	3.4	-2.8	
Apr 22, 2006	68.2	87.8	0.09	2469.3	0.138	0.0	0.0	0.0	0.0	0.0	0.0	7.1	-6.3	

LAVE ALEDED Westher Deile Commence

Copyright @ 1994-2000 University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL 32611

Read the Terms of use under which this service is provided to your Web site suggestions, questions? Email FAWN INFO@ifas.ufl.edu Last Modified: Sunday, April 23, 2006 16:28:09

FAWN Partners... Location Info...

UF FLORIDA

Irrigation Scheduler - Input

Citrus MicroSprinkler Irrigation Scheduler

Please enter the specifications of your irrigation system and click [Create Schedule] to create a 2-week irrigation schedule. We also have

Tree Row Distances	E	mitter		Other Variables		
Between-Row: ft (10 - 40) In-Row: ft (4 - 30)	Diameter: Rate: Pattern: System Efficiency:	360 85	ft (1 - 25) gals/hr (1 - 30) deg (0 - 360) % (50 - 100)	Soil Type (Field Capacity): Irrigation Depth: Irrigation Trigger Depth: FAWN Station:	Apopka (.09) 36 • in. 6 • in. choose	

Create Schedule

About / Help

For help or more information about the scheduler, contact:

Irrigation Schedulers Citrus Vegetable, Strawberry Row crops Turf grass

Irrigation Scheduler - Output

UF v	UF University of Florida IFAS Extension										
		ida Auto ther Net									
HOME	DATA ACCESS	TOOLS	CLIMATE	ABOUT		DONATE	SPONSORS				
Tools	» <u>Citrus Irrigatio</u>	1									

Citrus MicroSprinkler Irrigation Scheduler

Please enter the specifications of your irrigation system and click [Create Schedule] to create a 2-week irrigation schedule. We also have

Tree Row Distances			E	mitter		Other Variables		
Between-Row:	20	ft (10 - 40) ft (4 - 30)	Diameter: Rate:	13 16	ft (1 - 25) gals/hr (1 - 30)	Soil Type (Field Capacity) Irrigation Depth:	: Immokalee (.10) 💌	
			Pattern:	360	deg (0 - 360)	Irrigation Trigger Depth: FAWN Station:	6 💌 in.	
		System Efficiency:	85	% (50 - 100)	FAWN Station.	Immokalee T: 0.1580"		

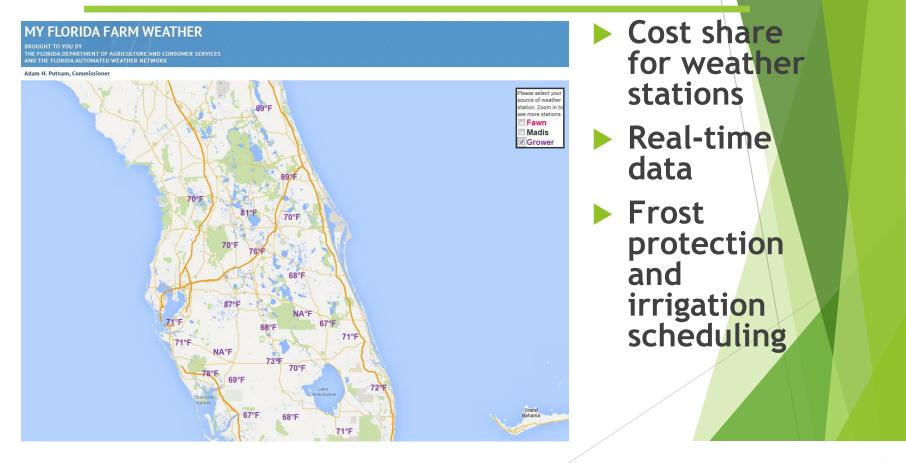
Create Schedule

Irrigation Schedule for 10/1/2013 to 10/15/2013

Irrigate every 4 days for 3 hours and 1 minutes . During this period...

if it rains:	< 1/4"	1⁄4" to 1⁄2"	1⁄2" to 3⁄4"	¾" to 1"	> 1 "					
then delay irrigation:	no delay	2 days	4 days	4 days	4 days					
De elemente verve en esificatione										

Bookmark your specifications


 Provides record of inputs
 Two week schedule

based on ET

UF FI OR IDA

Delay for rainfall

FDACS/IFAS – My Florida Farm Weather Program

Smartphone Apps

••••0	LTE	09:52	• •	100%	
Q A				0	Q
Alachua 2 fields					
Apopka					
Arcadia 2 fields					
Avalon					>
Balm					>
Belle gla	de2				>
QW	ER	ΤY	U	0	F
AS	D	FG	НJ	К	L
ŷΖ	X	C V	ΒN	М	
123	Q	spa	се	Sea	ırch

•••••• LTE	09:09	۵ 🕸 🕸 🛞 🖻			
🗸 Alachua	Results	Foreca			
	hedule for th 23/2013 to 10/0	e next 15 days 7/2013			
FIELD 01					
Every 3 days in	rigate 5 hour	s and 40 minute			
Irrigatio	n delay for wh	ien it rains			
Rain amoun	t	Irrigation delay			
< 1/4"		1 day			
1⁄4" to 1⁄2"		3 days			
1⁄2" to ¾"		3 days			
34" to 1"		3 days			
> 1 "		3 days			
FIELD 02					
Every	5 days irrigati	e 9 hours			
Irrigatio	n delay for wh	ien it rains			
Rain amoun	t	Irrigation delay			
< 1/4"		1 day			

l ph<mark>o</mark>ne or Android

- FAWN ET, expand to grower weather stations
- Real-time data
 - Citrus, Strawberry, Turf, expand to row crops, vegetable

UF FLORIDA

Merits and demerits of some soil moisture

sensors

Main features, advantages and disadvantages of selected soil water sensors for use in Florida citrus groves. Desirable features are shown in green, with orange and red colors ranked less satisfactory. Source: Schumann et al. 2018. Using soil moisture sensors for citrus irrigation. https://crec.ifas.ufl.edu/extension/trade_journals/2018/2018_july_using_soil.pdf

Soil water sensor type	Measured soil volume	Sensitivity to air gaps / loose soil	Sensitivity to salinity	Suitability for sandy soils	Accuracy	Calibration for different soils	Maintenance
Tensiometer	large	high	low	low	high	no	high
Granular matrix	large	high	medium- high	low	low	no	high
Capacitance	medium	high	medium- high	medium	medium	yes	low
Time domain transmission (TDT)	large	medium- low	low	high	high	no	low
Time domain reflectometry (TDR)	large	medium- low	low	high	high	no	low

Plant-based irrigation scheduling

Water use by plants is via transpiration. This can be measured in different ways such as sapflow sensors and lysimeters.

Use of sapflow sensors supported by a datalogger, solar panel, and 12-V battery (right and top)

Weighing lysimetery for measuring water use (left)

Plant-based irrigation scheduling

Dendrometers used for tracking changes in stem water potential in real time

Pressure bomb method for tracking water stress

Example of Applications

Use of reflective mulch and plant covers to enhance water use.

Soil-water parameters measurement:

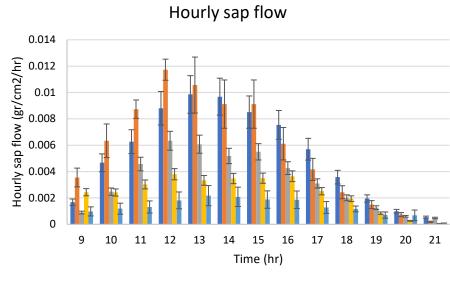
Soil probes (AquaSpy Inc, San Diego, CA)

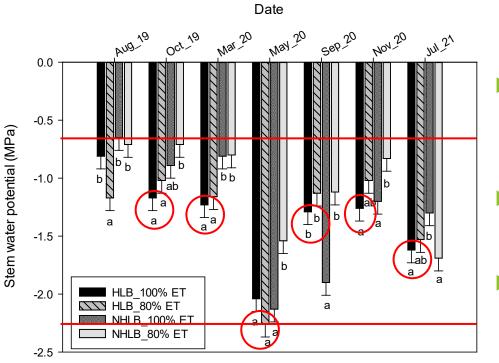
AquaSpy

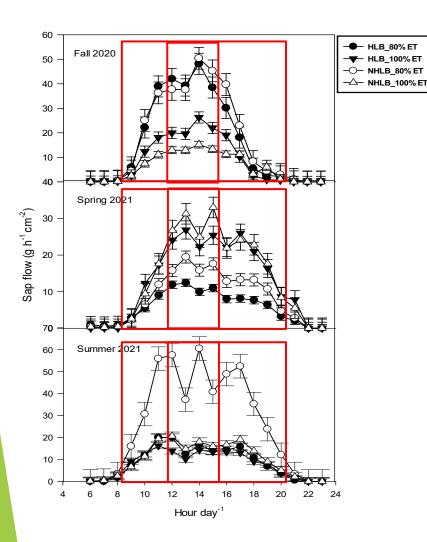
- Proven TDR capacitance soil moisture sensing technology.
- High definition digital probes with sensors positioned every 4 inches for a more detailed and dynamic view of entire soil profile.
- Capacity for soil specific calibration
- Continuous data collection and logging.
- 20", 40" & 60" Probe lengths.

Sap flow (water use) measurement:

Water uptake was measured using sap flow sensors (Dynamax Inc., Houston, TX) on one branch in each of four trees per treatment (each tree serving as a replicate)


The sap flow sensors were connected to a data logger (CR 1000, Campbell Scientific Inc., Logan, UT)


Sap flow (water use) measurement:


■ IPC ■ Mulch ■ Mulch&Insecticide ■ Kaoline ■ Control

The sap flow data suggest that using Mulch improved water use followed by IPC,

Example of applications (2) Effect of treatments on stem water potential

- SWP was significantly different (P <0.001) among treatments
- SWP ranged from 2.4 and -0.6 MPa
- The HLB-affected trees under both 80% and 100% ET had similar SWP for all but Aug_2019

Effect on sap flow

- Generally, sap flow occurred between 8 and 20 h daily.
- Sap flow (g h⁻¹ cm⁻²) peaked around 12 and 15 h
- Trees under 80% ET had at least 30% greater sap flow than those under 100% ET in Fall 2020
- However, in Spring 2021 trees under 80% ET had at least 28% greater sap flow than those under 100% ET for both HLB and NHLB trees

Summary

Most soils for crop production are sandy and need good management to optimize water use.

Tools are available for irrigation management including plant-based and soil-based sensors.

Optimal irrigation is possible using these tools and can lead to great water savings.

ACKNOWLEDGEMENTS

- <u>Collaborators:</u>
- UF/IFAS CREC: Dr. Kwakye, Dr. Ghoveisi. Dr. Diepenbrock
- USDA MAC APHIS and Citrus Initiative for for Funding

QUESTIONS/COMMENTS?

E-mail: dkadyampakeni@ufl.edu

